Structure and function of endoplasmic reticulum STIM calcium sensors.

نویسندگان

  • Peter B Stathopulos
  • Mitsuhiko Ikura
چکیده

Store-operated calcium (Ca(2+)) entry (SOCE) is a vital Ca(2+) signaling pathway in nonexcitable as well as electrically excitable cells, regulating countless physiological and pathophysiological pathways. Stromal interaction molecules (STIMs) are the principal regulating molecules of SOCE, sensing changes in sarco-/endoplasmic reticulum (S/ER) luminal Ca(2+) levels and directly interacting with the Orai channel subunits to orchestrate the opening of Ca(2+) release-activated Ca(2+) (CRAC) channels. Recent atomic resolution structures on human STIM1 and STIM2 have illuminated critical mechanisms of STIM function in SOCE; further, the first high-resolution structure of the Drosophila melanogaster Orai channel has revealed vital data on the atomic composition of the CRAC channel pore and the assembly of individual Orai subunits. This chapter focuses on the mechanistic information garnered from these high-resolution structures and the supporting biophysical, biochemical, and live cell work that has enhanced our understanding of the relationship between STIM and Orai structural features and CRAC channel function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

STIM and ORAI proteins in the nervous system.

Stromal interaction molecules (STIM) 1 and 2 are sensors of the calcium concentration in the endoplasmic reticulum. Depletion of endoplasmic reticulum calcium stores activates STIM proteins which, in turn, bind and open calcium channels in the plasma membrane formed by the proteins ORAI1, ORAI2, and ORAI3. The resulting store-operated calcium entry (SOCE), mostly controlled by the principal com...

متن کامل

Store-operated calcium channels.

Store-operated calcium channels (SOCs) are a major pathway for calcium signaling in virtually all metozoan cells and serve a wide variety of functions ranging from gene expression, motility, and secretion to tissue and organ development and the immune response. SOCs are activated by the depletion of Ca(2+) from the endoplasmic reticulum (ER), triggered physiologically through stimulation of a d...

متن کامل

Calcium Signals: STIM Dynamics Mediate Spatially Unique Oscillations

Receptor-induced Ca(2+) oscillations provide 'digitized' signals that confer precise activation of downstream targets. New studies reveal that STIM proteins - sensors of endoplasmic reticulum Ca(2+) levels - cyclically translocate during oscillations, transiently coupling to activate cell-surface Ca(2+) entry channels, resulting in a spatially unique signal that selectively triggers immediate-e...

متن کامل

Physiological and pathophysiological functions of SOCE in the immune system.

Calcium signals play a critical role in many cell-type specific effector functions during innate and adaptive immune responses. The predominant mechanism to raise intracellular (Ca²⁺) used by most immune cells is store-operated Ca²⁺ entry (SOCE), whereby the depletion of endoplasmic reticulum (ER) Ca²⁺ stores triggers the influx of extracellular Ca²⁺. SOCE in immune cells is mediated by the hig...

متن کامل

CRISPR-Cas-Induced Mutants Identify a Requirement for dSTIM in Larval Dopaminergic Cells of Drosophila melanogaster

Molecular components of store-operated calcium entry have been identified in the recent past and consist of the endoplasmic reticulum (ER) membrane-resident calcium sensor STIM and the plasma membrane-localized calcium channel Orai. The physiological function of STIM and Orai is best defined in vertebrate immune cells. However, genetic studies with RNAi strains in Drosophila suggest a role in n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current topics in membranes

دوره 71  شماره 

صفحات  -

تاریخ انتشار 2013